LIBERTY PAPER SET STD. 10 : Mathematics (Standard) [N-012(E)] **Full Solution** Time: 3 Hours **ASSIGNTMENT PAPER 4** Section-A **1.** (A) 1 **2.** (A) 10 **3.** (C) $\sqrt{(b^2 - 4ac)^2}$ **4.** (D) 6 π **5.** (D) 2.88 **6.** (C) 70 **7.** infinite **8.** $\frac{1}{2}$ **9.** 2 **10.** 2*a* **11.** $\frac{1}{2}$ **12.** 24 **13.** True **14.** False **15.** True **16.** True **17.** pqr **18.** (0, -1) **19.** $\frac{\pi R^2 P}{360}$ **20.** $\frac{1}{3}\pi r^2(2r+h)$ **21.** (c) $-\frac{b}{a}$ **22.** (a) $\frac{c}{a}$ **23.** (b) $\sqrt{2}$ **24.** (a) $\sqrt{3}$ Section-B 25. Here, for how many minutes Ravina and Jatin meet at the starting point one has to find the LCM of 18 and 12. $18 = 2 \times 3^2$ $12 = 2^2 \times 3$:. LCM (18, 12) = $2^2 \times 3^2 = 36$ $= 36 \times 60$ second = 2160 second Hence, they will meet again at the stasting point after 2160 second. **26.** x - 3y = 7...(1) 3x - 3y = 15...(2) Subtract equation (1) from (2), 3x - 3y = 15x - 3y = 7_ + _ 2x = 8 $x = \frac{8}{2}$ x = 4Put x = 4 in eq. (1), 4 - 3v = 7 $\therefore -3y = 7 - 4$ $\therefore -3y = 7 - 4$ $\therefore -3y = 3$ $\therefore 3y = -3$ $\therefore y = \frac{-3}{3}$ y = -1x = 4, y = -1

27. $3x^2 - 4\sqrt{3}x + 4 = 0$ ∴ $a = 3, b = -4\sqrt{3}, c = 4$ ∴ $b^2 - 4 ac = (-4\sqrt{3})^2 - 4(3)(4) = 48 - 48 = 0$ ∴ $b^2 - 4 ac = 0$

Real roots exist for given equation. and they are equal to each other.

 $\therefore x = \frac{-b}{2a} = \frac{-(-4\sqrt{3})}{2\times 3} = \frac{4\sqrt{3}}{6} = \frac{2}{\sqrt{3}}$ Therefore, roots of given equation $= \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}$ **28.** Suppose, first number be *x*, According the first condition, second number + first number = 27 \therefore second number + x = 27 \therefore second number = 27 - xAccording to second condition, First number \times second number = 182 x(27 - x) = 182 $\therefore 27x - x^2 = 182$ ert $\therefore x^2 - 27x + 182 = 0$ $\therefore x^2 - 13x - 14x + 182 = 0$ $\therefore x(x-13) - 14(x-13) = 0$ $\therefore (x - 13) (x - 14) = 0$ $\therefore x - 13 = 0$ OR x - 14 = 0 $\therefore x = 13$ OR x = 14If x = 13 i.e. first number = 13 = 27 - xthen second number = 27 - 13= 14If first number = 14= 27 - xthen, second number = 27 - 14= 13**29.** Here, a = 21, d = 18 - 21 = -3Suppose, n^{th} term $a_n = -81$ $a_n = a + (n-1) d$ $\therefore -81 = 21 + (n - 1) (-3)$ $\therefore -81 = 21 - 3n + 3$ $\therefore -81 = 24 - 3n$ $\therefore -27 = 8 - n$:. n = 8 + 27 $\therefore n = 35$

Therefore, the 35^{th} term of the given AP is -81

 \triangle ABC is a right angle triangle, $\angle B = 90^{\circ}$

15
$$cot A = 8$$

- $\therefore \cot A = \frac{8}{15}$
- $\therefore \frac{AB}{BC} = \frac{8}{15}$ $\therefore \frac{AB}{8} = \frac{BC}{15} = k$, where k is a positive real number
- \therefore AB = 8k, BC = 15k

According to Pythagoras Theorem,

$$AC^2 = AB^2 + BC^2$$

:.
$$AC^2 = (8k)^2 + (15k)^2$$

$$\therefore \quad AC^2 = 64k^2 + 225k^2$$

$$\therefore \quad AC^2 = 289k^2$$

$$\therefore$$
 AC = 17k

$$\therefore \quad \sin A = \frac{BC}{AC} = \frac{15k}{17k} = \frac{15}{17} \text{ and}$$
$$\cos A = \frac{AB}{AC} = \frac{8k}{17k} = \frac{8}{17}$$

ert

31. LHS =
$$\frac{1}{2 - \sin^2 \alpha} + \frac{1}{2 + \tan^2 \alpha}$$

$$= \frac{1}{1+1-\sin^{2}\alpha} + \frac{1}{1+1+\tan^{2}\alpha}$$
$$= \frac{1}{1+\cos^{2}\alpha} + \frac{1}{1+\sec^{2}\alpha}$$
$$= \frac{1}{1+\cos^{2}\alpha} + \frac{1}{1+\frac{1}{\cos^{2}\alpha}}$$
$$= \frac{1}{1+\cos^{2}\alpha} + \frac{1}{\frac{\cos^{2}\alpha+1}{\cos^{2}\alpha}}$$

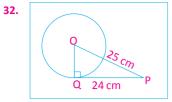
$$\frac{\cos^2 \alpha}{1 + \cos^2 \alpha} + \frac{\cos^2 \alpha}{1 + \cos^2 \alpha}$$

ά

$$= \frac{1 + \cos^2 \alpha}{1 + \cos^2 \alpha}$$

=

= RHS



Here, radius = OQ OP = 25 cm and PQ = 24 cm are given. OQ \perp PQ \therefore For \triangle OQP, \therefore OQ² + PQ² = OP² \therefore OQ² + 24² = 25² \therefore OQ² + 576 = 625 \therefore OQ² = 625 - 576 \therefore OQ² = 49 \therefore OQ = 7 cm = Radius \therefore Diameter = 2 (Radius) = 2 (7) = 14 cm

33.
$$r = h = 7$$
 cm

Volume of cylinder = $\pi r^2 h$

$$= \frac{22}{7} \times 7^{2} \times 7$$

= 22 × 49
= 1078 cm³

34. Here highest freq. is 23. So, Mode class = 30 - 35

ert

$$l = 30, h = 5, f_1 = 23, f_0 = 21, f_2 = 14$$

$$Z = l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$$

$$= 30 + \left[\frac{23 - 21}{2(23) - 21 - 14}\right] \times 5$$

$$= 30 + \left[\frac{2}{46 - 35}\right] \times 5$$

$$= 30 + \left[\frac{2 \times 5}{11}\right]$$

$$= 30 + \frac{10}{11}$$

$$Z = 30 + 0.91$$

$$Z = 30 + 0.91$$

$$Z = 30.91$$
 years.

35.

Number of letters (class)	Number of surnames f_i	cf	
1 - 4	6	6	
4 - 7	30	6 + 30 = 36	
7 - 10	40	36 + 40 = 76	
10 - 13	16	76 + 16 = 92	
13 – 16	4	92 + 4 = 96	
16 – 19	4	96 + 4 = 100	

Here, n = 100

$$\therefore \frac{n}{2} = 50$$

Since the 50th observation is contained in class 7-10, the median class is 7-10

 \therefore *l* = lower limit of median class = 7

- cf = cumulative frequency of class preceding the median class = 36
- f = frequency of median class = 40

$$h = \text{class size} = 3$$

Median M = $l + \left(\frac{n}{2} - cf\right) \times h$ \therefore M = $7 + \left(\frac{50 - 36}{40}\right) \times 3$ \therefore M = $7 + \frac{14 \times 3}{40}$ \therefore M = $7 + \frac{21}{20}$ \therefore M = 7 + 1.05 \therefore M = 8.05 letters

36. A box contains 90 discs which are number from 1 to 90.

Total number of discs = 90

(i) Suppose A be the event "a perfect square number drawn on disc,"

There are 9 perfect square numbers 1, 4, 9, 16, 25, 36, 49, 64 and 81 among 1 to 90.

 \therefore The number of outcomes favourable to A = 9

$$\therefore$$
 P (A) = $\frac{9}{90} = \frac{1}{10}$

(ii) Suppose B be the event "a perfect cube number drawn on disc."

There are 4 perfect cube numbers 1, 8, 27 and 64 among 1 to 90.

 \therefore The number of outcomes favourable to B = 4

:. P (B) =
$$\frac{4}{90} = \frac{2}{45}$$

- **37.** Here, the number of possible outcomes is six : 1, 2, 3, 4, 5 and 6.
 - (i) Let E be the event 'getting a number greater than 4' and therefore, the numbers of possible outcomes favourable to E is 2 (5 and 6)

 $P(E) = \frac{\text{Number of outcomes favourable to E}}{\text{Number of all possible outcomes}}$ $= \frac{2}{6} = \frac{1}{3}$ (ii) Let F be the event 'getting a number less than or equal to 4'.

The number of outcomes favourable to F is 4(1, 2, 3, 4).

$$P(F) = \frac{\text{Number of outcomes favourable to F}}{\text{Number of all possible outcomes}}$$
$$= \frac{4}{6} = \frac{2}{3}$$

Section-C

38. Let the quadratic polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

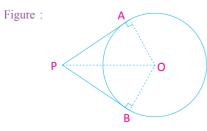
$$\therefore \alpha + \beta = 4 = \frac{4}{1} = \frac{-b}{a} \text{ and } \alpha \beta = 1 = \frac{1}{1} = \frac{c}{a}$$
$$\therefore a = 1, b = -4, c = 1$$

So, one quadratic polynomial which fits the given conditions is $x^2 - 4x + 1$. You can check that any other quadratic polynomial which fits these conditions will be of the form $k(x^2 - 4x + 1)$, where k is real.

39. We have,

a = 1, b = 9, c = 14 $\alpha + \beta = -\frac{b}{a} \alpha \cdot \beta = \frac{c}{a}$ $\alpha + \beta = -\frac{9}{1}$ $\alpha \cdot \beta = \frac{14}{1}$ $\alpha + \beta = -9$ and $\alpha \cdot \beta = 14$ $\therefore (\alpha + \beta)^2 = (-9)^2$ $\therefore \quad \alpha^2 + 2\alpha\beta + \beta^2 = 81$ $\therefore \quad \alpha^2 + \beta^2 + 2\alpha\beta = 81$ $\therefore \alpha^2 + \beta^2 + 2(14) = 81$ $\therefore \quad \alpha^2 + \beta^2 + 28 = 81$ $\therefore \quad \alpha^2 + \beta^2 = 81 - 28$ $\therefore \quad \alpha^2 + \beta^2 = 53$ erc **40.** Here, a = 8 years, $d = \frac{4}{12}$ year $=\frac{1}{3}$ year AP : 8, $\frac{25}{3}$, $\frac{203}{24}$,... $S_n = 168$ years. $S_n = \frac{n}{2} [2a + (n-1)d]$ $\therefore 168 = \frac{n}{2} \left[2(8) + (n-1) \frac{1}{3} \right]$:. $168 \times 2 = n \left[16 + (n-1) \frac{1}{3} \right]$ $\therefore \quad 336 = n \left(\frac{48 + n - 1}{3} \right)$ \therefore 336 × 3 = 48*n* + *n*² - n $\therefore 1008 = n^2 + 47n$ $\therefore n^2 + 47n - 1008 = 0$ $\therefore n^2 + 63n - 16n - 1008 = 0$ \therefore n(n + 63) - 16 (n + 63) = 0(n + 63) (n - 16) = 0 \therefore n + 63 = 0 OR n - 16 = 0 \therefore n = -63 Not possible So, n = 16Let, $a_n = a + (n - 1)d$ $\therefore a_{16} = 8 + (16 - 1)\frac{1}{3}$ $\therefore \quad a_{16} = 8 + d15 \times \frac{1}{3}n$ $\therefore a_{16} = 8 + 5$ $\therefore a_{16} = 13$:. So, the elder most student will be of age 13 years.

43. Given : A circle with centre O, a point P lying outside the circle with two tangents P<u>A</u> and P<u>B</u> on the circle from P. To prove : P<u>A</u> = P<u>B</u>



Proof : Join OP, OA and OB. Then \angle OAP and \angle OBP are right angles because these are angles between the radii and tangents and according to theorem 10.1 they are right angles.

Now, in right triangles OAP and OBP,

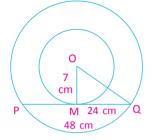
OA = OB (Radii of the same circle)

OP = OP (Common)

 $\angle OAP = \angle OBP$ (Right angle)

Therefore, $\triangle \text{ OAP} \cong \triangle \text{ OBP}$ (RHS)

This gives, PA = PB (CPCT)



For Δ OMQ, OM \perp MQ

 \therefore M is a midpoint of AQ

$$\therefore$$
 MQ = $\frac{1}{2}$ PQ = $\frac{1}{2}$ (48) = 24 cm

$$\therefore \quad OM^2 + MQ^2 = OQ^2$$
$$7^2 + 24^2 = R^2$$

- $49 + 576 = R^2$
- $625 = R^2$

$$\therefore$$
 R = $\sqrt{625}$

 \therefore R = 25 cm

45. Here, r = 15 cm and $\theta = 60^{\circ}$

In \triangle OAB; \angle O = 60° and OA = OB = 15 cm

$$\therefore \angle A = \angle B$$
 and $\angle A + \angle B = 120^{\circ}$

$$\therefore \ \angle A = \angle B = \angle C = 60^{\circ}$$

 $\therefore \Delta$ ABC is an equilateral triangle

In which, length of each side a = 15 cm

Area of equilateral triangle Δ OAB

$$= \frac{\sqrt{3}}{4} a^{2}$$

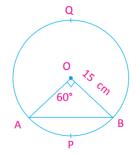
$$= \frac{\sqrt{3}}{4} \times 15 \times 15$$

$$= \frac{1.73}{4} \times 15 \times 15$$

$$= 97.3125 \text{ cm}^{2}$$
Area of circle= πr^{2}

$$= 3.14 \times 15 \times 15$$

 $= 706.5 \text{ cm}^2$



 $\pi r^2 \theta$ Area of minor sector OAPB 360 $\underline{3.14 \times 15 \times 15 \times 60}$ 360 $= 117.75 \text{ cm}^2$ Area of minor segment APB = Area of minor sector OAPB – Area of equilateral triangle Δ OAB = 117.75 - 97.3125 $= 20.4375 \text{ cm}^2$ **46.** Total cards in deck = 52A : card is Red colour king = 2B : card is not a club = 39C : card is Queen of heart = 1 We have formula, No. of possible outcomes for given event P(E) =Total outcomes So, $P(A) = \frac{2}{52} = \frac{2 \times 1}{26 \times 2} = \frac{1}{26}$ $P(B) = \frac{39}{52} = \frac{13 \times 3}{13 \times 4} = \frac{3}{4}$ $P(C) = \frac{1}{52}$ Section-D **47.** Let us assume that, Bhavin's present age = xVrutik's present age = yFive years ago, Bhavin = x - 5Vrutik = y - 5 \therefore As per condition (x - 5) = 3(y - 5) $\therefore x - 5 = 3y - 15$ $\therefore x - 3y = -15 + 5 = 0$ $\therefore x - 3y = -10$ 10 years from now, Bhavin will be x + 10 & Vrutik will be y + 10As per condition (x + 10) = 2 (y + 10) $\therefore x + 10 = 2y + 20$ $\therefore x - 2y + 10 - 20 = 0$ $\therefore x - 2y - 10 = 0$ Subtract (2) from (1), x - 3y = -10x - 2y = 10_ + + $\therefore -y + 20 = 0$ $\therefore y = -20$ y = 20

...(2)

...(1)

Put y = 20 in eqn (1), x - 3y = -10 $\therefore x - 3(20) = -10$ $\therefore x - 60 = -10$ $\therefore x = -10 + 60$ $\therefore x = 50$ Bhavin's present age = 50 years, Vrutik's present age = 20 years. **48.** Let, the larger no = x, smaller no = y. $\therefore x + y = 18$...(1) x - y = 2...(2) Add (1) & (2), x + y = 18x - y = 2_ + _ $\therefore 2x = 20$ $\therefore x = 10$ Put x = 10 in (1), 10 + y = 18 $\therefore y = 18 - 10$ $\therefore y = 18 - 10$ $\therefore y = 8$ Largen no = 10

Smaller no
$$= 8$$

49. Given: In ABC, a line parallel to side BC intersects AB and AC at D and E respectively.

To prove: $\frac{AD}{DB} = \frac{AE}{EC}$

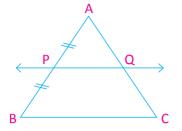
Proof : Join BE and CD and also draw DM \perp AC and EN \perp AB.

Then,
$$ADE = \frac{1}{2} \times AD \times EN$$
,
 $BDE = \frac{1}{2} \times DB \times EN$,
 $ADE = \frac{1}{2} \times AE \times DM$ and
 $DEC = \frac{1}{2} \times EC \times DM$.
 $\therefore \frac{ADE}{BDE} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB}$...(1)
and $\frac{ADE}{DEC} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC}$...(2)

Now, \triangle BDE and \triangle DEC are triangles on the same base DE and between the parallel BC and DE. then, BDE = DEC ...(3) Hence from eqⁿ. (1), (2) and (3),

$$\frac{AD}{DB} = \frac{AE}{EC}$$

50. Given : In Δ ABC, P is the mid-point of AB side.Through P a line is drawn parallel to BC to intersect AC at Q.To prove : Q is the mid-point of AC.



Proof : In Δ ABC, A–P–B and A–Q–C also PQ \parallel BC .

$$\therefore \quad \frac{AP}{PB} = \frac{AQ}{QC} \quad (\because \text{ theorem : } 6.1) \qquad \dots (1)$$

Now, P is the mid-point of AB such that AP = PB.

$$\therefore \frac{AP}{PB} = 1$$

$$\therefore \frac{AQ}{QC} = 1 \qquad (As per equation (1))$$

$$\therefore AQ = QC$$

- \therefore Q is the mid-point of AC.
- 51. Here AB is the tower C and D are two observation point from tower to respectively 4m and 9m from bottom of tower.

In $\triangle ABC \angle B = 90^{\circ}$

$$BC = 4m$$
 and $BD = 9m$

(: Complementry angles) Suppose $\angle ACB = \theta$, then $\angle ADB = 90 - \theta$ In Right Tringle ∆ABD In Right Tringle ABC $tan \ \theta = \frac{AB}{BC}$ $(\therefore tan 90 - \theta) = cot\theta$ $\therefore \tan \theta = \frac{AB}{h}$...(1) $\therefore tan (90 - \theta) = \frac{AB}{BD}$ $= \frac{AB}{0}$ $\therefore cot \theta$...(2) From (1) & (2) $tan \ \theta \ \bullet \ cot \ \theta = \ \frac{AB}{4} \times \frac{AB}{9}$ $\therefore 1 = \frac{AB^2}{36} \qquad (\therefore \tan \theta \cdot \cot \theta = 1)$ $\therefore 36 = AB^2$ $\therefore AB = 6m$

 \therefore The height of tower = 6 m

$$A$$

$$90^{-\theta}$$

$$C \leftarrow 4m \rightarrow B$$

$$1 \leftarrow 9m \longrightarrow 1$$

52.
$$d = 4, r = \frac{d}{2} = \frac{4}{2} = 2 m$$

 $h = 7 m, l = 3.5 m$

Total area of tent

= Curved surface area of cylinder + Curved surface area of cone

$$= 2\pi rh + \pi rl$$

$$= \pi r (2h + l)$$

$$= \frac{22}{7} × 2 [2(7) + 3.5]$$

$$= \frac{44}{7} [14 + 3.5]$$

$$= \frac{44}{7} × 17.5$$

$$= \frac{44 × 175}{7 × 10}$$

$$= \frac{2 × 22 × 5 × 5 × 7}{7 × 3 × 5}$$

$$= 22 × 5$$

$$= 110 m^{2}$$
cost rate = 100 Rs/m²
∴ Total cost of 1 tent cenvas = 100 × 110
= 11000 Rs
Total tents = 100
∴ Final total cost of 100 tents = 100 ₹
= 110000 Rs
Cost contributed by trust = 11,00,000 × 50%
= 5,50,000 Rs
h = 14 cm, d = 10 cm
∴ $r = \frac{d}{2} = \frac{10}{2} = 5 cm$
Volume of 1 bottle = $\pi r^{2}h$

$$= \frac{22}{7} × 5^{2} × 14$$

$$= 22 × 5 × 5 × 2$$

$$= 1100 cm^{3}$$

$$= 1100 ml$$
∴ Volume of 5 bottle = 5 × 1100 ml

$$= 5500 ml$$
cost of 100 ml = 10 Rs
cost of 1500 ml = 10 Rs
cost of 5500 ml = $\frac{5500 × 10}{100}$

Miti will pay 550 Rs to shopkeeper.

= 550 Rs

53.

Daily pocket allowance (₹)	Number of childern (f_i)	<i>x</i> _i	u _i	$f_i u_i$
11 – 13	7	12	-4	-28
13 – 15	6	14	-3	-18
15 – 17	9	16	-2	-18
17 – 19	13	18	-1	-13
19 – 21	f	20 = <i>a</i>	0	0
21 - 23	5	22	1	5
23 - 25	4	24	2	8
Total	44 + f	_	-	-64

Mean
$$\overline{x} = a + \left(\frac{\Sigma f_i u_i}{\Sigma f_i}\right) h$$

 $\therefore 18 = 20 + \left(\frac{-64}{44+f}\right) 2$
 $\therefore 18 - 20 = \frac{-128}{44+f}$
 $\therefore -2 = \frac{-128}{44+f}$
 $\therefore 44 + f = \frac{-128}{-2}$
 $\therefore 44 + f = 64$
 $\therefore f = 64 - 44$
 $\therefore f = 20$

Hence, the missing frequency f is 20.